ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. V. Subbaiah, C. Sunil Sunny
Nuclear Technology | Volume 135 | Number 3 | September 2001 | Pages 265-272
Technical Paper | Radiation Protection | doi.org/10.13182/NT01-A3221
Articles are hosted by Taylor and Francis Online.
KAMINI is the Kalpakkam Mini Reactor, and its main purpose is to cater to experimental needs and for neutron radiography. It is a water-cooled reactor with 233U as the fissile material. Using the Monte Carlo n-particle transport code MCNP, shielding optimization calculations are carried out for the south beam port tube, which is meant for neutron radiography of spent-fuel subassemblies of the fast breeder test reactor. The neutron beam port is a graded cylindrical aluminium channel starting from the center of the reactor core; it pierces through the biological shield and is 2 m long. The diameter of the channel at the core center is 54 mm, at the other end it is 25 cm, and it is 0.5 m below the floor level. The latter end serves as the neutron surface source for these calculations. The calculations have been carried out in cylindrical geometry (r,z) of shield structures. From results of the analysis, a movable shield 50 cm thick (25 cm paraffin and 25 cm lead), 75 cm wide, and 172 cm long extending ~95 cm into the demineralizer room (cooling water purification room) is proposed to replace the existing temporary shield structure. In addition, fixed shields of the same thickness and width of 50 cm on either side of the beam is recommended to reduce the dose levels to a few tens of microsieverts per hour in the accessible areas. Further, the lead-shielded cylindrical tube meant for insertion of irradiated fuel subassemblies for neutron radiography needs to be covered with 20 cm of paraffin up to a height of 1 m from ground level to avoid streaming of neutrons through the air column.