ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
David G. Martin
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 304-311
Technical Paper | Fuel | doi.org/10.13182/NT79-A32184
Articles are hosted by Taylor and Francis Online.
The fact that not all coated fuel particles in a batch fail after the same irradiation history is due to manufacturing variations in values of individual particle parameters. Two methods of calculating the failure fraction as a function of burnup in terms of these statistical variations are discussed: (a) a random sampling of particles combined with a simple stress model, and (b) the convolution of the individual variations combined with an advanced stress model. These methods were applied to particles manufactured by two laboratories in support of the U.K. low-enriched fuel cycle high-temperature reactor design. Experimental values of variations in the following parameters were included: kernel diameter and porosity, thickness of buffer, seal, silicon carbide and inner and outer pyrocarbon layers (all assumed to be normally distributed), and the silicon carbide fracture stress (assumed to obey a Weibull distribution). It was concluded that the convolution approach was the more satisfactory method. The results enable one to identify which of the various parameters considered are the most worthwhile for manufacturers to put development effort into so as to reduce their variability. For the particles considered here, these are primarily silicon carbide fracture stress, followed by kernel porosity.