ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
B. R. Wienke, W. F. Miller, Jr., T. J. Seed
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 272-288
Technical Paper | Reactor | doi.org/10.13182/NT79-A32181
Articles are hosted by Taylor and Francis Online.
Neutral hydrogen transport in a fully ionized two-dimensional tokamak plasma was examined using discrete ordinates and contrasted with earlier analyses. In particular, curvature effects induced by toroidal geometries and ray effects caused by possible source localization were investigated. From an overview of the multigroup discrete-ordinates approximation, methodology in two-dimensional cylindrical geometry is detailed, mesh and plasma zoning procedures are sketched, and the piecewise polynomial solution algorithm on a triangular domain is obtained. Toroidal effects and comparisons as related to reaction rates and particle spectra are examined for various model and source configurations. For symmetric source distributions, toroidal effects on fluxes scale roughly as R/rj, with R the major axis and rj measured along the major toroidal axis. Increases in collision rates and decreases in leakages are also noted for the system. Effects on a sputtering model and measurement techniques for the charge exchange spectrum show that decrease in sputtered outflux due to geometry is exhibited with greatest asymmetry in sputtered flux along the major toroidal axis. Directional dependence of a plasma measurement technique is specifically linked to toroidal flux variations, with the result that lesser inner and greater outer wall temperatures are predicted. Ray effects for localized sources in the plasma are categorized and negated with fictitious source methods. It is found that isolated neutral sources cause ray effects only in highly homogeneous plasmas where ionization dominates charge exchange processes.