ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
S. Gross, D. Vollath
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 264-271
Technical Paper | Reactor | doi.org/10.13182/NT79-A32180
Articles are hosted by Taylor and Francis Online.
Out-of-pile experiments were performed on fuel configurations, having a geometry similar to that of reactor fuel elements to study the thermal interaction between molten UO2 and subcooled sodium. The fragmented fuel generated was investigated by means of a scanning electron microscope. The composition of the fuel particles and the test results, especially the pressure pulses measured, lead to the following conclusions concerning the processes taking place. The liquid fuel escaping from the fuel rods has already been coarsely dispersed by the escaping filling gas. Finer fragmentation is mainly caused by two factors. The first are mechanical stresses occurring while the pieces solidify; the shell-shaped particles show that liquid fuel had been expelled from the interior of the pieces during the process of solidification. Second, coarser pieces of fuel were fragmented by small amounts of penetrating liquid sodium that was superheated and subsequently evaporated. The measured pressure pulses are due to rapid evaporation of this entrapped sodium.