ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alain Lebrun, Gilles Bignan
Nuclear Technology | Volume 135 | Number 3 | September 2001 | Pages 216-229
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3217
Articles are hosted by Taylor and Francis Online.
Criticality safety analysis devoted to spent-fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent-fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as burnup credit. To be used, burnup credit involves obtaining evidence of the reactivity loss with a burnup measurement.Many nondestructive assays (NDA) based on neutron as well as on gamma-ray emissions are devoted to spent-fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously, and the link to burnup is a power link. As a result, burnup determination with passive neutron measurement is extremely accurate.Some gamma emitters also have interesting properties in order to characterize spent fuels, but the convenience of the gamma spectrometric methods is very dependent on the characteristics of the spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels.Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail:1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several nuclear power plants in western Europe, gives the average burnup within a 5% uncertainty and also the extremity burnup.2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (active neutron interrogation, passive neutron counting, and gamma spectrometry).