ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. T. Walker, S. Pickering
Nuclear Technology | Volume 42 | Number 2 | February 1979 | Pages 207-215
Technical Paper | Thorium Fuel Cycle in a Breeder Economy / Material | doi.org/10.13182/NT79-A32151
Articles are hosted by Taylor and Francis Online.
Analyses were performed on three mixed-oxide fuel pins. Two were irradiated in a fast flux, one in an epithermal-neutron flux. The compositions of the corrosion product phases in the fuel-cladding gaps of the different pins were similar. The phase was essentially a mixture of metal oxides, with chromium oxide the main constituent. Cesium chromate, if it formed at all, was present in only small amounts. Oxides of iron and nickel were not detected, which suggests that the oxygen potential in the gap did not exceed that for the FeCr2O4 formation. Metallic fragments in the phase resulted from mechanical interactions involving the phase and cladding grains whose boundaries had been weakened by intergranular corrosion. Chromium and manganese were lost from the inner cladding surface of all three pins. Titanium loss also occurred from the two pins clad with titanium-stabilized steel. A grain boundary phase depleted in chromium was present at the inner cladding surface of one of the pins irradiated in a fast flux. The phase that was associated with intergranular attack occurred in advance of the corrosion front.