ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
C. T. Walker, S. Pickering
Nuclear Technology | Volume 42 | Number 2 | February 1979 | Pages 207-215
Technical Paper | Thorium Fuel Cycle in a Breeder Economy / Material | doi.org/10.13182/NT79-A32151
Articles are hosted by Taylor and Francis Online.
Analyses were performed on three mixed-oxide fuel pins. Two were irradiated in a fast flux, one in an epithermal-neutron flux. The compositions of the corrosion product phases in the fuel-cladding gaps of the different pins were similar. The phase was essentially a mixture of metal oxides, with chromium oxide the main constituent. Cesium chromate, if it formed at all, was present in only small amounts. Oxides of iron and nickel were not detected, which suggests that the oxygen potential in the gap did not exceed that for the FeCr2O4 formation. Metallic fragments in the phase resulted from mechanical interactions involving the phase and cladding grains whose boundaries had been weakened by intergranular corrosion. Chromium and manganese were lost from the inner cladding surface of all three pins. Titanium loss also occurred from the two pins clad with titanium-stabilized steel. A grain boundary phase depleted in chromium was present at the inner cladding surface of one of the pins irradiated in a fast flux. The phase that was associated with intergranular attack occurred in advance of the corrosion front.