ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Won Sik Yang, Hussein S. Khalil
Nuclear Technology | Volume 135 | Number 2 | August 2001 | Pages 162-182
Technical Paper | Accelerators | doi.org/10.13182/NT135-162
Articles are hosted by Taylor and Francis Online.
The results of blanket design studies for a lead-bismuth eutectic (LBE)-cooled accelerator transmutation of waste system are presented. These studies focused primarily on achieving two important and somewhat contradictory performance objectives: First, maximizing discharge burnup, so as to minimize the number of successive recycle stages and associated recycle losses, and second, minimizing burnup reactivity loss over an operating cycle, to minimize reduction of source multiplication with burnup. The blanket is assumed to be fueled with a nonuranium metallic dispersion fuel; pyrochemical techniques are used for recycle of residual transuranic (TRU) actinides in this fuel after irradiation. The key system objective of high-discharge burnup is shown to be achievable in a configuration with comparatively high power density and relatively low burnup reactivity loss. System design and operating characteristics that satisfy these goals while meeting key thermal-hydraulic and materials-related design constraints have been preliminarily developed. Results of the performance evaluations indicate that an average discharge burnup of ~27% is achieved with a ~3.5-yr fuel residence time. Reactivity loss over the half-year cycle is 5.3%k. The peak fast fluence value at discharge, the TRU fraction in the charged fuel, and the peak coolant velocity are well within the assumed design limits. Owing to its use of nonuranium fuel, this proposed LBE-cooled system can consume light water reactor-discharge TRUs at the maximum rate achievable per unit of fission energy produced (~1.0 g/MWd).