ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Mark W. Crump, John C. Lee
Nuclear Technology | Volume 41 | Number 1 | November 1978 | Pages 87-96
Technical Paper | Instrument | doi.org/10.13182/NT78-A32135
Articles are hosted by Taylor and Francis Online.
A mathematical model for ex-core detector response in pressurized water reactor (PWR) configurations is presented, based on the use of a spatial weighting function that is independent of core power distribution. The spatial weighting function is derived equivalently using a point kernel model and from numerical solutions of the adjoint neutron transport equation. These methods are verified through the use of experimental thermal flux data for deep penetration in water and metal media. An adjoint ANISN weighting function calculation for a one-dimensional cylindrical PWR model also shows good agreement with an equivalent point kernel calculation. Weighting function calculations using the point kernel method for a detailed three-dimensional model based on the Indian Point Unit 2 Reactor indicate that 91% of ex-core detector response is due to the five fuel assemblies nearest the detector. We believe that the weighting functions obtained with the point kernel method represent reliable information that can be used in the analysis of ex-core detector response during reactor operations.