ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Mark W. Crump, John C. Lee
Nuclear Technology | Volume 41 | Number 1 | November 1978 | Pages 87-96
Technical Paper | Instrument | doi.org/10.13182/NT78-A32135
Articles are hosted by Taylor and Francis Online.
A mathematical model for ex-core detector response in pressurized water reactor (PWR) configurations is presented, based on the use of a spatial weighting function that is independent of core power distribution. The spatial weighting function is derived equivalently using a point kernel model and from numerical solutions of the adjoint neutron transport equation. These methods are verified through the use of experimental thermal flux data for deep penetration in water and metal media. An adjoint ANISN weighting function calculation for a one-dimensional cylindrical PWR model also shows good agreement with an equivalent point kernel calculation. Weighting function calculations using the point kernel method for a detailed three-dimensional model based on the Indian Point Unit 2 Reactor indicate that 91% of ex-core detector response is due to the five fuel assemblies nearest the detector. We believe that the weighting functions obtained with the point kernel method represent reliable information that can be used in the analysis of ex-core detector response during reactor operations.