ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
T. A. Shih, M. I. Temme
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 312-322
Technical Paper | Reactor | doi.org/10.13182/NT78-A32116
Articles are hosted by Taylor and Francis Online.
A safety comparison was made for two 1200-MW(electric) liquid-metal fast breeder reactor cores with homogeneous and heterogeneous fuel arrangements, respectively. The two cores were conceptually designed to be identical except for those parameters affected by different fuel arrangements. The comparison was limited to the issue of initiating phase energetics in the hypothetical core disruptive accident. Both cores were assumed to be at end-of-equilibrium cycle and subject to unprotected loss-of-flow transients. The SAS3D code was used for analyses with four sets of phenomenological assumptions at different degrees of conservatism. Results of the four corresponding cases showed that the heterogeneous core consistently behaved more mildly than the homogeneous core due to its relatively much lower “effective” sodium voiding reactivity worth.