ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hsiang-Shou Cheng, Ming-Shih Lu, David J. Diamond
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 283-298
Technical Paper | Reactor | doi.org/10.13182/NT78-A32114
Articles are hosted by Taylor and Francis Online.
The space-time effects associated with the void reactivity feedback in a commercial boiling water reactor were studied with the aid of the two-dimensional (R,Z) time-dependent coupled neutronics thermal-hydraulics computer code BNL-TWIGL. The statistical weight factor (SWF), which equates a point-reactor model to an appropriate space-dependent model, was used to quantify these effects. The SWF varied for the different reference reactor conditions and types of void perturbations considered. Its significant magnitude demonstrated that unless proper account is taken of multidimensional effects in plant transient calculations, the void feedback will be incorrect, and this will lead to errors in power and temperature. The presence of bypass void was found to increase the void reactivity feedback. The influence of other feedback mechanisms was studied, and a suggestion was offered for obtaining a measurement of the void reactivity coefficient.