ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Kazys K. Almenas, Joseph M. Marchello
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 263-275
Technical Paper | Reactor | doi.org/10.13182/NT78-A32112
Articles are hosted by Taylor and Francis Online.
The effect of a mechanistic drop evaporation model on the pressure-temperature transient of a containment under loss-of-coolant accident (LOCA) conditions has been investigated. To implement the model, the traditional two-node lumped parameter (atmosphere and sump) had to be expanded to encompass additional open thermodynamic systems. The calculations were compared against results obtained by a widely employed containment analysis code using the instantaneous evaporation model. The mechanistic drop evaporation model was found to produce higher peak pressures and substantially higher degrees of superheat for a steam line break LOCA. The dependence of pressure in both saturated and superheated air-steam atmospheres was generalized in terms of normalized pressure-energy derivatives. For superheated atmospheres, these derivatives were found to depend on the mode of energy removal. Two idealized energy removal modes were defined (purely condensing and purely noncondensing). The normalized pressure-energy derivatives for these mechanisms were found to differ by a factor of 2 to 3 for the parameter range of interest to containment analysis.