ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Inki Oh, Robert E. Rothe
Nuclear Technology | Volume 41 | Number 2 | December 1978 | Pages 226-243
Technical Paper | Extraction of Energy From Nuclear Fuels Without Reprocessing to Separate Plutonium / Fuel Cycle | doi.org/10.13182/NT78-A32107
Articles are hosted by Taylor and Francis Online.
Criticality calculations on minimally reflected, concrete-reflected, and plastic-reflected single tanks and on arrays of cylinders reflected by concrete and plastic have been performed using the KENO-IV code with 16-group Hansen-Roach neutron cross sections. The fissile material was high-enriched (93.17% 235U) uranyl nitrate [UO2(NO3)2] solution. Calculated results are compared with those from a benchmark critical experiments program to provide the best possible verification of the calculational technique. The calculated keff’s underestimate the critical condition by an average of 1.28% for the minimally reflected single tanks, 1.09% for the concrete-re-flected single tanks, 0.60% for the plastic-reflected single tanks, 0.75% for the concrete-reflected arrays of cylinders, and 0.51% for the plastic-reflected arrays of cylinders. More than half of the present comparisons were within 1% of the experimental values, and the worst calculational and experimental discrepancy was 2.3% in keff for the KENO calculations.