ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Constantine P. Tzanos
Nuclear Technology | Volume 41 | Number 2 | December 1978 | Pages 195-206
Technical Paper | Extraction of Energy From Nuclear Fuels Without Reprocessing to Separate Plutonium / Reactor | doi.org/10.13182/NT78-A32105
Articles are hosted by Taylor and Francis Online.
An efficient optimization method has been developed that determines simultaneously beginning-of-cycle (BOC) enrichment distribution and the control rod programming in reactors that lose reactivity during burnup such that (a) reactor criticality and a desired power distribution are satisfied throughout the cycle and (b) all the control rods are withdrawn at end-of-cycle (EOC). The method uses (a) an iterative scheme of uncontrolled burnup calculations [and linear programming (LP) for more than two enrichment zones] to determine a good approximation of the EOC reactor composition that satisfies reactor criticality and the desired power distribution and (b) LP in a reversed burnup process starting from the EOC conditions to determine the control rod programming and the BOC enrichment distribution.