ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Meyer Pobereskin, Kenneth D. Kok, William J. Madia
Nuclear Technology | Volume 41 | Number 2 | December 1978 | Pages 149-167
Technical Paper | Extraction of Energy From Nuclear Fuels Without Reprocessing to Separate Plutonium / Fuel Cycle | doi.org/10.13182/NT78-A32101
Articles are hosted by Taylor and Francis Online.
The technical feasibility of a coprocessing concept involving recovery of all the actinides in the spent fuel as a product group has been analyzed. It has been shown that this can be accomplished by a simple modification of the Purex process. The recovered actinide product group can be reconstituted as a fuel for recycle in either light water reactors (LWRs) or liquid-metal fast breeder reactors (LMFBRs), either by addition of moderately enriched uranium for the LWR case or by controlled partial partitioning of uranium in the LMFBR case. Partial partitioning of uranium from a uranium-plutonium extract (that may contain other transuranics, especially neptunium) can be carried out under Purex process conditions that preclude separation of plutonium. A steady-state fuel composition is approached in eight cycles (40 yr) for the LWRs and five cycles (20 yr) for the LMFBRs. Potential for proliferation can be greatly reduced for subnational diversion since the plutonium is not separated from its actinide homologs, nor is the recovered actinide fuel fully decontaminated from fission products. The possibility of proliferation by national diversion can be impeded. Recycle of the actinides reduces, via transmutation, the cumulative amount of actinides produced, defers the bulk of the actinide waste disposal to the end of the useful fuel lifetime, and ameliorates the high-level waste management problem.