Received May 10, 1977 Accepted for Publication September 7, 1977 Adjoint Monte Carlo calculations have been carried out using the three-dimensional radiation transport code, MORSE, to estimate the nuclear heating and radiation damage in the toroidal field (TF) coils adjacent to a 28- × 68-cm2 rectangular neutral beam injector duct that passes through the blanket and shield of a deuterium-tritium (D-T) burning tokamak reactor. The plasma region, blanket, shield, and TF coils were represented in cylindrical geometry using the same dimensions and compositions as those of the Experimental Power Reactor. The radiation transport was accomplished using coupled 35-group neutron, 21-group gamma-ray cross sections obtained by collapsing the DLC-37 cross-section library. Nuclear heating rates were obtained using fluence-to-kerma factors generated by the computer codes MACK and SMUG, and radiation damage rates were calculated using damage response functions generated by the computer code RECOIL. The presence of the neutral beam injector duct leads to increases in the nuclear heating rates in the TF coils ranging from a factor of 3 to a factor of 196, depending on the location. Increases in the radiation damage also result in the TF coils. The atomic displacement rates increase by factors of 2 to 138 and the hydrogen and helium gas production rates increase from factors of 11 to 7600 and from 15 to 9700, respectively.