ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Weston M. Stacey, Jr., Mohamed A. Abdou
Nuclear Technology | Volume 37 | Number 1 | January 1978 | Pages 29-39
Technical Paper | Reactor | doi.org/10.13182/NT78-A32088
Articles are hosted by Taylor and Francis Online.
Received May 12, 1977 Accepted for Publication September 7, 1977 The major parameters and corresponding economic characteristics of a representative class of commercial tokamak fusion power reactors are examined as a function of four major design parameters: plasma βt, toroidal magnetic field strength, first-wall lifetime, and power output. It is shown that for βt ≥ 0.06, the minimum cost of energy is obtained for toroidal field strengths of ∼8 to 9 T. Tokamak power plants exhibit an economy of scaling with a lower cost of energy for larger power reactors. Representative design parameters, costs, schedule, and technology advances are presented for a sequence of three reactors that could lead to the demonstration of commercial feasibility of this class of tokamak fusion power reactors near the turn of the century.