ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Weston M. Stacey, Jr., Mohamed A. Abdou
Nuclear Technology | Volume 37 | Number 1 | January 1978 | Pages 29-39
Technical Paper | Reactor | doi.org/10.13182/NT78-A32088
Articles are hosted by Taylor and Francis Online.
Received May 12, 1977 Accepted for Publication September 7, 1977 The major parameters and corresponding economic characteristics of a representative class of commercial tokamak fusion power reactors are examined as a function of four major design parameters: plasma βt, toroidal magnetic field strength, first-wall lifetime, and power output. It is shown that for βt ≥ 0.06, the minimum cost of energy is obtained for toroidal field strengths of ∼8 to 9 T. Tokamak power plants exhibit an economy of scaling with a lower cost of energy for larger power reactors. Representative design parameters, costs, schedule, and technology advances are presented for a sequence of three reactors that could lead to the demonstration of commercial feasibility of this class of tokamak fusion power reactors near the turn of the century.