ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R. F. Mattas, D. L. Smith
Nuclear Technology | Volume 39 | Number 2 | July 1978 | Pages 186-198
Technical Paper | Material | doi.org/10.13182/NT78-A32077
Articles are hosted by Taylor and Francis Online.
A computer model based on available materials property data has been developed to predict the lifetimes of first wall structural materials under a variety of reactor conditions. The model combines the materials property data with the appropriate ranges of limiting criteria to establish design lifetimes as functions of such relevant parameters as temperature and integrated neutron wall loading. Empirical equations developed from existing literature data were used to interpolate and extrapolate the required materials properties over the desired ranges. The present effort has concentrated on the evaluation of two candidate structural materials, namely, Type 316 stainless steel and a vanadium-base alloy (V-15% Cr-5% Ti). Curves have been derived that show the estimated lifetime and life-limiting property as a function of temperature for a specified set of design criteria, e.g., maximum swelling of 4%, minimum uniform elongation of 1%, and total creep strain of <1%, for an applied stress of 103 MPa (15 ksi). The results obtained indicate a much longer design lifetime for the vanadium-base alloy than for stainless steel under the conditions of interest. The computational model has been incorporated into the Tokamak Power Plant Systems Program at Argonne National Laboratory.