ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. T. Walker
Nuclear Technology | Volume 39 | Number 3 | August 1978 | Pages 289-296
Technical Paper | Material | doi.org/10.13182/NT78-A32059
Articles are hosted by Taylor and Francis Online.
A mixed carbonitride fuel irradiated to 3.9% fissions of initial metal atoms in a fast flux was examined by electron microprobe analysis. The fuel contained a large porous zone. Inclusions at the edge of the zone contained palladium and tin and were formed from the liquid phase. Within the porous region, the platinum metals occurred in the UPd3 and U(Tc0.02Ru0.78Rh0.14Pd0.06)3Cx phases, molybdenum and technetium formed inclusions of the (U,Pu)x(Mo,Tc)yCz type, and part of the rare earth elements reacted with impurity oxygen to give a sesquioxide phase. Plutonium depletion was found near the fuel center, and plutonium enrichments were measured at the outer part of the porous zone and at healed cracks in the dense fuel. Cladding carburization occurred and, at the inner cladding surface, the carbon concentration was 0.4 wt%.