ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Q. Huda, S. I. Bhuiyan, T. K. Chakrobortty, M. M. Sarker, M. A. W. Mondal
Nuclear Technology | Volume 135 | Number 1 | July 2001 | Pages 51-66
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3205
Articles are hosted by Taylor and Francis Online.
Important thermal-hydraulic parameters of the 3-MW TRIGA MARK-II research reactor operating under both steady-state and transient conditions are reported. Neutronic analyses were performed by using the CITATION diffusion code and the MCNP4B2 Monte Carlo code. The output of CITATION and MCNP4B2 were input to the PARET thermal-hydraulic code to study the steady-state and transient thermal-hydraulic behavior of the reactor. To benchmark the PARET model, data were obtained from different measurements performed by thermocouples in the instrumented fuel (IF) rod during the steady-state operation both under forced- and natural-convection mode and compared with the calculation. The mass flow rates needed for input to PARET were taken from the Final Safety Analysis Report for a downward forced coolant flow equivalent to 3500 gal/min. For natural convection cooling of the reactor, the mass flow rate was generated using the NCTRIGA code. Peak fuel temperatures measured by the thermocouples in the IF rods at different power levels of the TRIGA core were compared with the values calculated by PARET. The axial distribution of the temperatures of the fuel centerline, fuel surface, and the cladding surface in the hot channel were calculated for the reactor operating at the full-power level. Fuel surface heat flux and heat transfer coefficients for the hot channel were also calculated for the reactor operating at the full-power level. The investigated results were found to be in good agreement with the experimental and operational values. The testing of the PARET model calculations through benchmarking the available TRIGA experimental and operational data for pulse-mode operations showed that PARET can successfully be used to analyze the transient behavior of the reactor. Major transient parameters, such as peak power and prompt energy released after pulse, full-width at half-maximum of pulse peak, and maximum fuel centerline temperatures for different fuel elements at different pulses, were computed and compared with the experimental and operational values. It was observed that pulsing of the reactor inserting an excess reactivity of 1.996 $ shoots the reactor power level to 873 MW compared to an experimental value of 852 MW; the maximum fuel temperature corresponding to this peak power was found to be 512°C. The investigation on maximum available reactivity insertion at full power (2.24 $) by the transient rod raises the reactor power to 1629 MW, and the fuel centerline temperature from the calculations is found to be 937°C.