ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Layton J. Wittenberg
Nuclear Technology | Volume 38 | Number 3 | May 1978 | Pages 434-440
Technical Paper | Hot Laboratory | doi.org/10.13182/NT78-A32041
Articles are hosted by Taylor and Francis Online.
Concepts being developed for tritium containment at proposed fusion power plants will rely on existing laboratory experiences. The successful operation of a glove-box containment system was demonstrated by the control of an accidental release of 0.65 PBq (1.75 × 104 Ci) of tritium to the glove-box atmosphere. The total gaseous release to the environment was 79 ± 10 GBq (2.2 Ci). In addition, the tritium concentration in the body fluids of the sole worker in the laboratory increased by only 74 kBq/ℓ (2 µCi/ℓ). The appearance rate of tritium in the room and the absorption of tritium by the worker were adequately described by permeation of the molecular species of T2 and HTO through the gloves.