ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
T. A. Gabriel, B. L. Bishop, F. W. Wiffen
Nuclear Technology | Volume 38 | Number 3 | May 1978 | Pages 427-433
Technical Paper | Material | doi.org/10.13182/NT78-A32040
Articles are hosted by Taylor and Francis Online.
The displacement per atom and gas production rates have been calculated for a number of alloys and elements using a design neutron spectrum at the first wall of a fusion reactor. These rates can be combined for most alloys to yield the defect production rates, the parameters currently used to extrapolate available irradiation effects data to fusion reactor conditions. Calculated rates of atom displacement and hydrogen generation in stainless steels are relatively insensitive to recent changes in the nuclear data files and to neutron spectrum differences produced by slight reactor design changes. In contrast, the helium production rate is sensitive to these changes and to the exact alloy composition. Composition variation within the specification range for Type 316 stainless steel can produce variations of ±9% in the helium generation rate.