ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Hyun Chul Lee, Hyung Jin Shim, Chang Hyo Kim
Nuclear Technology | Volume 135 | Number 1 | July 2001 | Pages 39-50
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3204
Articles are hosted by Taylor and Francis Online.
An adaptive control scheme of simulated annealing (SA) parameters derived from the polynomial-time cooling schedule is presented in terms of the efficiency enhancement of the SA algorithm. The parallel computing adaptive SA optimization scheme, which incorporates the optimization-layer-by-layer (OLL) neutronics evaluation model is then applied to determining the optimum fuel assembly (FA) loading pattern (LP) in the Korea Nuclear Unit 2 pressurized water reactor (PWR) using seven Pentium personal computers (three 266-MHz Pentium II and four 200-MHz Pentium Pro computers). It is shown that the parallel scheme enhances the efficiency of the SA optimization computation significantly but that it can get trapped in local optimum LPs more frequently than the single-processor SA scheme unless one takes preventive steps. As a way to prevent trapping of the parallel scheme in local optima, using multiple seed LPs is proposed instead of a single LP with which the individual processors start each stage, and how to determine the multiple seed LPs is discussed. Because of the high efficiency of the parallel scheme, the acceptability of a hybrid neutronics evaluation model, which is slower but more accurate than the OLL model, in the parallel optimization calculation is examined from the standpoint of computing time. By demonstrating that the FA LP optimization calculation for the equilibrium cycle core of the KNU-2 PWR can be completed in <1 h on seven Pentiums, we justify the routine utilization of the hybrid model in the parallel SA optimization scheme.