ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
P. Shahinian
Nuclear Technology | Volume 38 | Number 3 | May 1978 | Pages 415-426
Technical Paper | Material | doi.org/10.13182/NT78-A32039
Articles are hosted by Taylor and Francis Online.
Fatigue and creep crack propagation in 20 and 25% cold-worked Type 304 and 20% cold-worked Type 316 stainless steels were examined at 427 to 593°C (800 to 1100°F). The resistance to fatigue crack growth was slightly better for Type 304 stainless steel compared to Type 316 stainless steel, and was improved by an increase in cold work; however, these differences were small Compared to solution-annealed stainless steel, the cold-worked steels had higher crack growth resistance at high stress intensity levels. Creep crack growth occurred at 482°C (900°F), but much higher stress intensities, K, were required than in fatigue. However, at 593°C creep and fatigue crack growth occurred over the same K range and, in fact, at higher K levels crack growth in creep was faster than in fatigue. Retardation of crack growth was observed when the load on a specimen was changed from cyclic to static.