ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
F. V. Nolfi, Jr., Che-Yu Li
Nuclear Technology | Volume 38 | Number 3 | May 1978 | Pages 405-414
Technical Paper | Material | doi.org/10.13182/NT78-A32038
Articles are hosted by Taylor and Francis Online.
One of the major problems in the development of structural alloys for use in magnetic fusion reactors (MFRs) is the lack of suitable materials testing facilities. This is because operating fusion reactors, even of the experimental size, do not exist. A primary task in the early stages of MFR alloy development will be to adapt currently available irradiation facilities for use in materials development. Thus, it is generally recognized that, at least for the next ten years, studies of irradiation effects in an MFR environment on the microstructure and mechanical properties of structural materials must utilize ion and fission neutron simulations. Special problems will arise because, in addition to displacement damage, an MFR radiation environment will produce, in candidate structural materials, higher and more significant concentrations of gaseous nuclear transmutation products, e.g., helium and hydrogen, than found in a fast breeder reactor. These effects must be taken into account when simulation techniques are employed, since they impact heavily on irradiation microstructure development and, hence, mechanical properties.