ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. Schroeder, H. Barnert, R. Wischnewski
Nuclear Technology | Volume 38 | Number 2 | April 1978 | Pages 295-303
Technical Paper | Low-Temperature Nuclear Heat / Reactor | doi.org/10.13182/NT78-A32027
Articles are hosted by Taylor and Francis Online.
From the demand viewpoint, the connection of an installed nuclear thermal capacity of 290 MJ/s for district heating purposes would be possible in the central Ruhr District by 1982–1983. The nuclear district heating system is made up of several subsystems, for instance, a smaller size high-temperature reactor [500 MW(thermal)] as a nuclear heat-and-power plant and an interconnected district heating system with a feed temperature of 453 K (180°C). The expenditure for additional investments, additional fuel costs, and costs for substitute power capacity are charged to the thermal energy generation costs of the nuclear heat-and-power plant. For the nuclear district heating system, the district heating costs to the consumer will vary over wide limits, depending on local conditions, between 7.8 and 12.2 $/GJ at the commissioning date in 1983, assuming that all subsystems have to be newly installed. These costs can be lower than district heating costs in a conventional district heating system with fossil-fired heating stations.