ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
A. T. McMain, Jr., Franz J. Blok
Nuclear Technology | Volume 38 | Number 2 | April 1978 | Pages 271-279
Technical Paper | Low-Temperature Nuclear Heat / Reactor | doi.org/10.13182/NT78-A32024
Articles are hosted by Taylor and Francis Online.
Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size [800 to 1200 MW(thermal)] and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative to Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 × 106 Ib/h) of prime steam at 4.5 MPa/672 K (650 psia/750°F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K (1200 psia/912°F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.