ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
G. Oliva, G. Palmiotti, M. Salvatores, L. Tondinelli
Nuclear Technology | Volume 37 | Number 3 | March 1978 | Pages 340-352
Technical paper | Fuel | doi.org/10.13182/NT78-A31999
Articles are hosted by Taylor and Francis Online.
The elimination of transuranium (TRU) elements by neutron absorption has been investigated in an actual power liquid-metal fast breeder reactor (LMFBR) (of the Superphenix type). Special fuel elements containing TRU oxides were considered in different core locations. The effects on design parameters have also been evaluated. The results show that the advantages of TRU elimination by means of LMFBRs, compared with using a thermal reactor, consist mainly of the small perturbation of the integral properties and design parameters of the reactor for the large amount of TRU that can be introduced. However, from the point of view of the TRU transmutation reaction rates, thermal reactors seem to be better. The choice of a compromise between the variation of design parameters and the TRU amount to be transmutated depends on the actual reactor design.