ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
André Renoux, Jean Yves Barzic, Guy J. Madelaine, Pierre Zettwoog
Nuclear Technology | Volume 37 | Number 3 | March 1978 | Pages 313-327
Technical paper | Chemical Processing | doi.org/10.13182/NT78-A31997
Articles are hosted by Taylor and Francis Online.
The radon content in the atmosphere of a uranium mine, 183 pCi SC1, was found during the varied phases of the excavation (drilling, blasting, and clearing) to vary between 63 and 3600 pCi SC1. Radioactive equilibrium was not found to be reached for radon and its daughter products. By means of a seven-stage Andersen cascade impactor, the particle size distribution for the aerosols of the mine was determined as well as the alpha-particle activities on each disk of the impactor and on the millipore filter placed behind each stage. This yielded the information that the major portion of alpha activity in the test mine is connected with aerosols having a radius <0.4 nm. During excavation, more than 80% of the radioactivity is located on aerosols with radius smaller than 0.15 fim; this radioactive aerosol is the smallest found after blasting. In all cases, the alpha radioactivity associated with large particles (R > 1 pm) is very small (<3%). This indicates that if the Andersen impactor is used carelessly, it may yield an erroneous distribution of the radioactivity in a uranium mine. On etudie certaines caracteristiques de I’atmo-sphere d’un mine d’uranium laboratoire (teneur en radon 183 pCi SC1), et au cours des differentes phases de Vexploitation d’un chantier (foration, tir, apres-tir, diblayage, amenagement), les concentrations en radon variant, dans ce dernier cas, entre 2 et 300 Bq SC1 (63 et 3600 pCi SC1). Nous montrons que VZquilibre radioactif n’est pas atteint entre le radon et ses descendants. A Vaide d’un impacteur en cascade Andersen a sept etages, dont nous determinons experimentale-ment les caracteristiques, nous etablissons la granulometric, d’une part de I’aero sol de la mine, d’autre part de la radioactivity, a partir des comptages alpha de chaque disque de I’impacteur et d’un filtre “millipore” place derriere. C’est ainsi que nous trouvons que, dans la mine experiment ale, la majeure partie de la radioactivity alpha se trouve sur des aerosols de rayons inferieurs a 0.4 iim. En exploitation, plus de 80% de la radioactivity se situent sur des aerosols de rayons inferieurs a 0.15 ym, Vaerosol radioactif etant le plus fin au cours du deblayage. Dans tous les cas, la radioactivite alpha portee par les grosses particules (R> 1 ixm) est tres faible (<3%). Enfin, nos travaux montrent que, utilise sans precautions, VAndersen risque de donner une repartition erronee de la radioactivite d’une mine d’uranium, du fait de la fraction libre.