ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Mario D. Carelli
Nuclear Technology | Volume 37 | Number 3 | March 1978 | Pages 261-273
Technical paper | Reactor | doi.org/10.13182/NT78-A31994
Articles are hosted by Taylor and Francis Online.
Assembly exit thermocouples are chosen for the Clinch River Breeder Reactor Plant as the instrumentation providing the most useful information at the minimum cost. One thermocouple is positioned at the exit of each fuel assembly and at approximately half of the radial blanket assemblies. The number of thermocouples, their positions, and characteristics are selected to satisfy the reactor control, surveillance, and design verification functions. The various uncertainties affecting the assemblies’ coolant exit temperature measurements are quantitatively defined to correlate the measured temperature with the fuel rod design cladding temperature, which is the major parameter in determining the allowable fuel rod burn-up and lifetime. Thus, appropriate factoring of thermocouple measurements allows the fuel assembly burnup to be increased quite significantly, with related cost savings of hundreds of millions of dollars. Due to the tremendous economic leverage on operating costs over the plant lifetime, close attention to proper instrumentation should be paid in the design of future commercial liquid-metal fast breeder reactors.