ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
V. K. Manchanda, P. B. Ruikar, S. Sriram, M. S. Nagar, P. N. Pathak, K. K. Gupta, R. K. Singh, R. R. Chitnis, P. S. Dhami, A. Ramanujam
Nuclear Technology | Volume 134 | Number 3 | June 2001 | Pages 231-240
Technical Paper | Reprocessing | doi.org/10.13182/NT01-A3198
Articles are hosted by Taylor and Francis Online.
While the tri-n-butyl phosphate (TBP)-based PUREX process has been the workhorse of the nuclear fuel reprocessing industry for the last four and a half decades, a few drawbacks associated with the use of TBP have caused concern to the separation scientists and technologists. These shortcomings may pose a serious challenge particularly during the reprocessing of (a) short cooled thermal reactor fuels, (b) fast reactor fuels with the larger Pu content and significantly higher burn up, and (c) while treating various waste streams for their disposal to the environment. The N,N-dialkyl aliphatic amides have received particular attention as alternate potential extractants for the reprocessing of spent nuclear fuels in view of (a) the innocuous nature of their degradation products, namely, carboxylic acids/amines and (b) the possibility to incinerate the used solvent leading to reduced volume of secondary waste. The physical and chemical properties of these amides are influenced strongly by the nature of alkyl groups. The extractant N,N-dihexyl octanamide (DHOA) was found to be a promising candidate among a large number of extractants studied. Laboratory batch studies as well as mixer settler studies were performed under process conditions with DHOA and compared with those of TBP. DHOA was found to extract Pu(IV) more efficiently than TBP, both at trace-level concentration as well as under uranium loading conditions. In addition, the extraction behavior of Am(III) and Zr(IV) was studied at varying nitric acid concentrations (1 to 6 M). Extraction behavior of uranium at macroconcentrations (9.9 to 157.7 g/l) was carried out at different temperatures, and it was observed that DU decreased with the increase in U loading as well as with the increase of temperature (in the range 25 to 45°C) and that the two-phase reaction was exothermic in nature. Mixer settler studies on U(VI) revealed that DHOA is similar to TBP during the extraction cycle but better than TBP during the stripping cycle.