ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
L. F. Miller, R. G. Cochran, J. W. Howze
Nuclear Technology | Volume 36 | Number 1 | November 1977 | Pages 93-105
Radiation Environments in Nuclear Reactor Power Plant | Reactor | doi.org/10.13182/NT77-A31963
Articles are hosted by Taylor and Francis Online.
The problem of designing a constrained feedback control system for a nuclear reactor is investigated. The constraint imposed is that system stability must be retained under possible loss of any arbitrary feedback signal due to failure of the signal sensor. In addition, the control law is synthesized using only partial state availability, and the nominal control system without sensor failure is designed so that the system performs in a desired fashion. Several mathematical models of the reactor dynamics were employed. However, only a model with negative moderator activity coefficients and a single delayed neutron group was used as an example. This model permits a demonstration of two different computational methods for obtaining the required feedback control laws. The first of these two computational methods uses a global procedure for solving polynomial inequalities that represent the stabilization problem. The second method used an algorithm for decreasing a spectral radius function until it is negative, thus allowing implicit control over eigenvalue placement.