ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Eugene Normand
Nuclear Technology | Volume 36 | Number 1 | November 1977 | Pages 65-73
Radiation Environments in Nuclear Reactor Power Plant | Reactor | doi.org/10.13182/NT77-A31959
Articles are hosted by Taylor and Francis Online.
The effect of halogen plateout sources on containment post-loss-of-coolant accident dose rates has been evaluated. The main approach utilized has been to compare the dose rates due to halogen plateout and halogen immersion (or atmospheric) sources, assuming each is comprised of an equal inventory of radioiodines. Based on the parameters chosen, including the use of only the primary 131I photon, 0.36 MeV, for all calculations, the gamma-ray dose rate from the atmospheric component will always dominate over the plateout component for full containment configurations. However, for small chambers within the containment, the atmospheric and plateout dose rates are relatively comparable, so that determining which is greater depends on the location of the dose point.