ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
First GAIN vouchers of 2025 go to Curio, Deep Fission, Kairos, and NuCube Energy
The Department of Energy’s Gateway for Accelerated Innovation in Nuclear (GAIN) has awarded four fiscal year 2025 vouchers to support the development of advanced nuclear technologies. Each company will get access to specific capabilities and expertise in the DOE’s national laboratory complex—in this round of awards both Idaho National Laboratory and Pacific Northwest National Laboratory are named—and will be responsible for a minimum 20 percent cost share, which can be an in-kind contribution.
Soo-Youl Oh, Jonghwa Chang, Jong-Kyun Park, Manuel Carrasco
Nuclear Technology | Volume 134 | Number 2 | May 2001 | Pages 196-207
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT01-A3195
Articles are hosted by Taylor and Francis Online.
New core control logic known as Mode K has been developed to enhance the load-follow operation (LFO) capability of a pressurized water reactor. The Mode K reactor regulating system, which actuates control bank movements, consists of two closed control loops, one for the coolant average temperature control and the other for the axial power shape control. Via its peculiar logic for selecting the control banks to be driven, the Mode K controls the coolant average temperature and axial power shape simultaneously and automatically within their allowed operating limits. In this way, the Mode K significantly reduces the operator burden associated with conventional manual power shape control during LFOs. A simple and flexible soluble boron scenario complements the Mode K logic and contributes toward reducing operational burden by its simplicity. The Mode K logic has been implanted in the Korean Next-Generation Reactor, a 1300-MW(electric) class evolutionary nuclear power plant under development in Korea, and various kinds of LFOs including frequency control have been simulated using the Framatome engineering simulator SAPHIR. The simulation results show reasonable core control performance of the Mode K as well as proper behaviors of other major nuclear steam supply system components such as the pressurizer and steam generator.