ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A. Alberman, J. P. Genthon, L. Salon, G. Allegraud
Nuclear Technology | Volume 36 | Number 3 | December 1977 | Pages 336-346
Technical Paper | Material | doi.org/10.13182/NT77-A31947
Articles are hosted by Taylor and Francis Online.
Forecasting of changes in the physical properties of steels under irradiation is usually achieved through a detailed knowledge of the source in terms of atomic displacements. This source is extended to the secondary and tertiary atoms of the cascade, with Lindhard’s inelastic collision description. On this basis, it is possible to establish a model for the creation of “displacement zones” by evaluating their effectiveness through a nonoverlapping criterion between zones. The A 533 B steel yield strength increases after irradiation at 100°C (373 K) in two different spectra (Saclay—H2O at Osiris, D2O at EL.3) made it possible to compare the efficiency of this model with existing ones. Furthermore, preparation of the model leads to a normalized damage function closely approaching the one hitherto recommended by Euratom.