ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Wang Kee In
Nuclear Technology | Volume 134 | Number 2 | May 2001 | Pages 187-195
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-1
Articles are hosted by Taylor and Francis Online.
A numerical study was conducted to investigate the nuclear fuel assembly coolant flow mixing that is promoted by the flow deflectors on the grid spacer. Four typical flow deflectors (split vane, side-supported vane, swirl vane, and twisted vane) were chosen for this study. A single subchannel of one grid span is modeled using the flow symmetry. The predicted axial and lateral mean flow velocities, and the turbulent kinetic energy in the subchannel for the split-vane design, are in good agreement with the experimental results.The split vane and the twisted vane generate a large cross flow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The cross flow rapidly decreases and the swirling flow becomes dominant downstream of the spacer. The side-supported vane induces a horizontally elongated elliptic swirl in the subchannel and a secondary flow in the near downstream of the spacer. The swirl vane produces a circular swirling flow in the subchannel and a negligible cross flow. For the twisted-vane and side-supported vane designs, the change in direction of the cross flow was predicted. The average turbulent kinetic energy in the subchannel sharply increases near the spacer and rapidly decreases to a fully developed level. In summary, the numerical results showed a somewhat large difference from the experimental results near the spacer but represented the overall characteristics of coolant mixing well in a nuclear fuel bundle with the flow deflectors on the grid spacer.