ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
J. R. Phillips, T. K. Marshall
Nuclear Technology | Volume 36 | Number 2 | December 1977 | Pages 222-228
Technical Paper | International Safeguard / Fuel | doi.org/10.13182/NT77-A31929
Articles are hosted by Taylor and Francis Online.
A precision gamma-scanning system was applied to the nondestructive determination of the isotopic distributions of 103Ru and 106Ru in two failed (U,Pu)O2 fuel pins irradiated in the Experimental Breeder Reactor II. Significant differences in the two distributions were measured that were related to the half-lives of the two ruthenium isotopes. The two distributions can be used to determine the relative times at which the ruthenium deposits were formed within the fuel material. This information may be used to determine nondestructively the changes within the central void region over a period of several irradiation cycles.