ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. M. Hollabaugh, L. A. Wahman, R. D. Reiswig, R. W. White, P. Wagner
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 527-535
Advanced and Improved Fuel and Application | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31913
Articles are hosted by Taylor and Francis Online.
The experimentally determined quantitative effects of varying gas mixture composition on the properties of the zirconium carbide (ZrC) deposited on microspheres in a fluidized bed were a decrease in metallic appearance of the ZrC coat, with an increase in the ratio of the hydrocarbon gas to the ZrCl4 and co-deposition of carbon at high hydrocarbon gas concentrations. Increasing the H2 concentration inhibited these effects and permitted the ZrC to be deposited at higher hydrocarbon gas concentrations. Deposits of pure sub-stoichiometric ZrC coats were controllable over a limited concentration range. The ZrC was deposited in a fluidized bed of ThO2 particles at a maximum temperature of ∼1650 K, using gas mixtures of H2, argon, ZrCl4, and CH4 or C3H6. The ZrCl4 flow was controlled using a powder feeder.