ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
P. D. Smith, R. G. Steinke, D. D. Jensen, T. Hama
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 475-482
Fission Product Release | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31907
Articles are hosted by Taylor and Francis Online.
A model simulating the in-pile release of metallic fission products from a batch of coated fuel particles is based on a solution of the transient Fick’s diffusion equation in a nonhomogeneous medium. It is developed in two stages. First, some representative analytic solutions for a single birth pulse in a single particle are numerically tabulated as functions of nondimensional parameters. Second, the solution for a history of continuously varying source, temperature, and particle failure fraction is obtained by interpolation and superposition. This permits use of the method as an efficient source subroutine in full-core release problems. The large number of physical parameters in the model provides adaptability in correlating and extrapolating experimental results. By using numerical examples, the model was shown to account for the following phenomena: recoil, transient diffusion response, transition from the intact to the failed state, and the effect of various rate-limiting mechanisms on the release.