ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. L. Smith
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 403-412
Performance and Performance Modeling | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31901
Articles are hosted by Taylor and Francis Online.
Biso-coated ThO2 fertile fuel kernels will migrate up the thermal gradients imposed across coated particles during high-temperature gas-cooled reactor (HTGR) operation. Thorium dioxide kernel migration has been studied as a function of temperature (1290 to 1705°C) (1563 to 1978 K) and ThO2 kernel burnup (0.9 to 5.8% FIMA) in out-of-pile postirradiation thermal gradient heating experiments. The studies were conducted to obtain descriptions of migration rates that will be used in core design studies to evaluate the impact of ThO2 migration on fertile fuel performance in an operating HTGR and to define characteristics needed by any comprehensive model describing ThO2 kernel migration. The kinetics data generated in these postirradiation studies are consistent with in-pile data collected by investigators at Oak Ridge National Laboratory, which supports use of the more precise postirradiation heating results in HTGR core design studies. Observations of intergranular carbon deposits on the cool side of migrating kernels support the assumption that the kinetics of kernel migration are controlled by solid-state diffusion within irradiated ThO2 kernels. The migration is characterized by a period of no migration (incubation period), followed by migration at the equilibrium rate for ThO2. The incubation period decreases with increasing temperature and kernel burnup. The improved understanding of the kinetics of ThO2 kernel migration provided by this work will contribute to an optimization of HTGR core design and an increased confidence in fuel performance predictions.