ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. P. Harmon, C. B. Scott
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 343-352
Performance and Performance Modeling | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31894
Articles are hosted by Taylor and Francis Online.
Properties affecting the irradiation performance of outer pyrolytic carbon (PyC) layers on Triso- and Biso-coated fuel particles were studied. Irradiation temperatures were 1000 to 1500°C (1273 to 1773 K). Fast-neutron fluences reached 12.4 × 1025 n/m2 (E > 29 fJ)HTGR, which is 55% beyond the large high-temperature gas-cooled reactor peak design exposure of 8.0 × 1025 n/m2. Coatings with densities between 1.85 and 1.95 Mg/m3 and mean optical anisotropy values of ≤1.03 (BAF0 units) exhibited the best irradiation performance on Triso particles. For Biso particles, it is necessary to deposit the outer layer at coating rates between 3 and 8 µm/min and with densities ≥1.84 Mg/m3 to produce coatings impermeable to fission gases after irradiation. Data from fuel rod tests show that it is important to limit the degree of surface-connected porosity of the outer PyC layer and the amount of binder phase in the matrix to prevent coating failures resulting from coating-matrix interactions.