ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
R. J. Price
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 320-336
Pyrocarbon | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31892
Articles are hosted by Taylor and Francis Online.
The properties of pyrolytic silicon carbide (SiC) that are important to its use in nuclear fuel particle coatings are reviewed. The structure of material deposited under different conditions varies in growth features and the constituent phases; the principal effects of neutron irradiation on the structure are to create point defect clusters at irradiation temperatures below ∼1000°C (1273 K) and voids above ∼1000°C (1273 K), with a concomitant volume expansion. The thermal conductivity is greatly reduced by neutron irradiation. Data are available for mechanical properties including Young’s modulus, flexural strength, biaxial strength, and creep. Some useful results have followed from application of the Weibull model to strength measurements. The strength of single-phase beta-SiC is barely affected by neutron irradiation, but the strength of material containing excess silicon may be seriously reduced after irradiation. SiC has excellent resistance to oxidation as long as a surface film of silica is maintained. Diffusion of fission products is generally very slow, but it may be increased by structural imperfections.