ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. L. R. Lefevre, M. S. T. Price
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 263-278
Pyrocarbon | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31886
Articles are hosted by Taylor and Francis Online.
The coating of nuclear fuel particles with pyrolytic carbon derived from a hydrocarbon gas is a complex process, and, until recently, although adequate behavior in service has been demonstrated, the methods used to obtain a particular product have been largely empirical. A concerted effort was made to close the loop: manufacture-quality-performance. A model of the decomposition process postulated the formation and growth of nuclei into agglomerates that are captured by the fuel particles. The evolution of the model involved many simplifications, and to reduce the number of variables involved, standardized operating conditions were assumed. The most important of these for comparative studies is the concept of operating at a constant reaction zone temperature. When this is done, many of the anomalies previously ascribed to the effect of different source gases are removed. An experimental program has been carried out to test the model, and excellent correlations have been found between the predicted and actual size of agglomerates that can be observed in the coating structure. The agglomerate size has also been correlated with coating failure. With the aid of the model, similar deposits have been made from quite different source gases. A survey of the failure modes of coated particle fuel acts as an aid to deducing, in the light of the deposition model, the method of achieving a satisfactory quality assurance program for the structure of coatings on nuclear fuel particles.