ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
P. L. Allen, L. H. Ford, J. V. Shennan
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 246-253
Fabrication | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31884
Articles are hosted by Taylor and Francis Online.
The objectives of the coated particle development program at the Reactor Fuel Element Laboratories (RFL) have been to define the essentials of a production route for the manufacture of nuclear fuel kernels and coated particles and to identify the important process parameters that determine the particle properties and hence the irradiation performance. Detailed characterization assessments of the various components of the coated particles have enabled a number of advanced coated particle designs to be optimized. The versatility of the RFL powder agglomeration process for the fabrication of highly spherical carbide or oxide kernels is exemplified by its ability to produce virtually monosized kernels in the range from 200 to 1000 µm in diameter, with controlled porosities in the range from 5 to 20% and the facility with which solid fission product and oxygen getters may be incorporated. The principles of the RFL pyrocarbon (PyC) and silicon carbide (SiC) coating processes, together with the experience of coating particles on a large scale—kernel batch sizes up to 25 kg—have been delineated. The understanding of the important parameters controlling deposition processes has led to optimum specifications for coater design and process route such that high sphericity is maintained throughout coating with a minimum spread in coat properties. More recent detailed investigations of process variables have identified the factors controlling PyC microstructure and the effect that coat defects and substrate shapes have on the ability of SiC to contain the gaseous fission products released by the fuel kernel during in-reactor operation. The proportion of defective particles is reduced by establishing process specifications to minimize coating-kernel bonding and misshapen kernels.