ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Evangelos Stamatiou, Peter M.-Y. Chung, Masahiro Kawaji
Nuclear Technology | Volume 134 | Number 1 | April 2001 | Pages 84-96
Technical Paper | NURETH-9 | doi.org/10.13182/NT01-A3188
Articles are hosted by Taylor and Francis Online.
Wave-turbulence interaction was experimentally investigated in turbulent open-channel flows with a shear-free wavy surface using a photochromic dye activation technique. In the experiments conducted, two-dimensional waves of different amplitudes, wavelengths, and frequencies were superimposed on a liquid surface via a mechanical wave maker. The range of Reynolds numbers varied from 3900 to 5000 based on the hydraulic diameter, with the corresponding aspect ratio of the channel width to liquid depth varying from 7.5 to 5.Within the range of Reynolds numbers investigated, the results showed that the streamwise turbulence intensity increased in the bulk and interfacial regions in comparison to the undisturbed flow.Furthermore, video sequences of the flow visualization experiments clearly revealed that the spanwise motion of the liquid was significantly suppressed; the traces did not immediately deform in the spanwise direction but retained their shape with increasing wave amplitude and frequency as compared to smooth interface flows. This suggests that waves may have suppressed longitudinal vortices generated near the smooth interface. The suppression of the longitudinal vortices in wavy open-channel flows has been proposed as a mechanism responsible for the turbulence energy redistribution, different from that for smooth open-channel flows.