ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. K. Fink, J. J. Heiberger, R. Kumar, R. A. Blomquist
Nuclear Technology | Volume 35 | Number 3 | October 1977 | Pages 656-662
Technical Paper | Material | doi.org/10.13182/NT77-A31874
Articles are hosted by Taylor and Francis Online.
As part of a program at Argonne National Laboratory (ANL) to investigate the compatibility of high-temperature sodium with materials being considered for core retention systems in liquid-metal fast breeder reactors, various commercial refractories and samples of reactor control materials were exposed to static sodium at 850°C for 5 h. The refractories tested were samples of magnesia, alumina, zirconia, mixed ceramic oxides, and graphite; the reactor control materials were boron carbide and tantalum. Samples of graphite, zirconia, and the refractories with high alumina or magnesia contents, but with low silica and chromic oxide contents, were found to be compatible with high-temperature sodium. Sample compatibility with sodium decreased with an increase in the silica content of the sample. Samples with large silica content failed completely. These results are in good agreement with results of other experiments, performed at ANL and at the Westinghouse Advanced Reactors Division, in which these materials were exposed to boiling sodium.