ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Bal Raj Sehgal, Joseph A. Naser, Ching-Lu Lin, Walter B. Loewenstein
Nuclear Technology | Volume 35 | Number 3 | October 1977 | Pages 635-650
Technical Paper | Fuel | doi.org/10.13182/NT77-A31872
Articles are hosted by Taylor and Francis Online.
A number of thorium-based fuels for fast breeder reactors using either sodium or helium coolant are considered. Thorium-plutonium mixed-oxide fuels have similar or slightly better material properties than those for mixed urani-um-plutonium oxides. Their thermal performance is also very similar to that of the UO2-PuO2 mixed-oxide fuel. Their nuclear performance shows a substantially lower breeding gain, but a much lower positive sodium void coefficient than those for the UO2-PuO2 system. The material properties of Th-U-Pu and Th-U metal alloys are more suitable for reactor application than those of the uranium metal alloy. The Th-U-Pu metal alloy system has higher breeding gain, much lower positive sodium void coefficient, and a possibly higher negative Doppler coefficient of reactivity than the magnitude of those parameters for the UO2-PuO2 system. The Th-233U metal alloy system has a slightly lower breeding gain than the UO2-PuO2 system, but it has a negative reactivity coefficient for sodium voiding from the core. Equilibrium fuel cycle calculations reveal that all of the thorium metal alloy systems have a longer cycle length than the UO2-PuO2 system for the same burnup constraint. Thermal-hydraulic calculations show that sodium-bonded thorium metal alloy fuel elements may be able to operate up to an ∼82 kW/m (25 kW/ft) peak power rating in sodium coolant.