ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
E. E. Gruber
Nuclear Technology | Volume 35 | Number 3 | October 1977 | Pages 617-634
Technical Paper | Fuel | doi.org/10.13182/NT77-A31871
Articles are hosted by Taylor and Francis Online.
The need for a capability to predict transient fission gas behavior arises because of the complexity of fission gas response to transient conditions, the importance of fission gas to fuel mechanical response, and the prevalent limitations on experimental information relevant to the problem. A detailed mechanistic analysis of intragranular swelling and release of gas from grains to grain boundaries, both as they result from transient heating, has been developed and incorporated in a fission gas release and swelling code (FRAS). A generalized parametric model to approximate the results that would be obtained from the more detailed calculations has also been developed. The need for this model arises from the necessity to consider the fission gas effects in more general multinode accident-analysis and pin-mechanics codes. For such calculations, the FRAS code is prohibitive in its demands on computer storage and execution time, while the parametric FRAS (PFRAS) code reduces these demands by an order of magnitude. Transient calculations have been carried out with both codes, both to illustrate the sensitivity of the results to the parameters and to indicate the level of confidence that can reasonably be ascribed to PFRAS results. The parameters considered include initial gas concentration, grain size, heating rate, thermal gradient, and pressure. The PFRAS model gives a satisfactory approximation to FRAS results for the broad range of parameters surveyed.