ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
J. N. Chung, P. S. Ayyaswamy
Nuclear Technology | Volume 35 | Number 3 | October 1977 | Pages 603-610
Technical Paper | Reactor | doi.org/10.13182/NT77-A31869
Articles are hosted by Taylor and Francis Online.
Heat removal rates from containment spray droplets following a loss-of-coolant accident in a nuclear reactor have been calculated by three different droplet models: the complete mixing model, the model with internal circulation, and the rigid sphere. Irrespective of the model, the thermalization time is found to increase with increasing droplet size. It is noticed that the thermalization times predicted by the complete mixing and nonmixing models either underestimate or overestimate the value provided by the internal circulation model. It is concluded that the effect of internal circulation cannot be ignored in estimating heat removal rates from spray droplets.