ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
John W. Wilson, Fred M. Denn
Nuclear Technology | Volume 35 | Number 1 | August 1977 | Pages 178-183
Technical Paper | Shielding | doi.org/10.13182/NT77-A31861
Articles are hosted by Taylor and Francis Online.
It is anticipated that many future manned space operations will be radiation limited and that laminated wall structures and the use of new materials will be required to reduce radiation exposure. Methods for electron shield analysis are reviewed in light of anticipated needs in the space program. The most general method is still the Monte Carlo method, which is of limited usefulness for shield analysis due to excessive computer requirements. Methods based on energy deposition coefficients or energy transmission and reflection factors are quite accurate, but are currently limited to aluminum shield material. Analytical methods based on Mar’s approximation for the electron transmission factor are relatively general and computer efficient but seriously underestimate shield requirements. A correction to methods using Mar’s approximate transmission factor is derived herein and results in a slightly conservative estimate of shield requirements. Techniques for laminated shield design are still lacking.