ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
C. Sari
Nuclear Technology | Volume 35 | Number 1 | August 1977 | Pages 145-153
Technical Paper | Fuel | doi.org/10.13182/NT77-A31857
Articles are hosted by Taylor and Francis Online.
Temperature gradients similar to those existing in high-rated MX-type fuel [UC, (U,Pu)C and (U, Pu)C0.9 N0.1] have been obtained by heating cylindrical pellets with an alternating electrical current flowing in the axial direction. The power used and the heat impedance existing between the surface of the pellets and the cladding material is sufficient to produce average temperature gradients on the order of 150 kK/m in temperature regions between 1273 and 2273 K. Preliminary experiments show that under these temperature conditions, important restructuring of the MX-type fuel occurs after a comparatively short time (<40 h). Generally, four structural zones, characterized by a temperature and a temperature gradient, have been observed in cross sections of the heated specimens. In the direction of increasing pellet radius (decreasing temperature), one finds a zone with large rounded pores and large equiaxed grains, a zone where pores and grains are elongated in the direction of the temperature gradient, and next to this, a zone with intergranular pores and equiaxed grains, and, finally, an unrestructured zone at the edge of the pellet. Lenticular pores are not responsible for the fuel restructuring. They appear at temperatures around 1773 K, and their apparent migration rate is lower than that observed in uranium-plutonium oxides. The fuel heated in a thermal gradient also shows a general tendency to sinter at temperatures as low as 1523 K and a tendency to crack. The free volume created by the formation of cracks is independent of the initial density of the fuel. Plutonium enrichment at the open and healed cracks and at the surface of the pellets has been observed.